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A Monte-Carlo study is presented for irreversible kinetic gelation in binary 
polymers in three dimensions. Using a growth scheme where attempts are made 
to form bonds with the help of radicals with probability k / ( l  + k) and without 
the help of radicals with probability 1/(1 + k), where k = 0 ,  1,2 . . . .  , ~e, we 
have studied the crossover from one universality class of critical phenomena in 
kinetic gelation to another universality class of random percolation. In the 
radical assisted gelation, several features are incorporated to make the model 
more realistic, for example, the conservation of the number of radicals during 
the growth (more suited for living anionic polymerization), the introduction of 
poisons and chain-preferring reactions are considered. Conserving the radicals 
delays gelation as well as trapping. The trapping can also be delayed by 
increasing the functionality of the monomers. The effect of the poison is rather 
severe; even a small concentration of poison (cp > 2%) terminates the reaction 
well before the gel point in a mixture of binary and ternary monomers, and it 
seems to affect the critical phenomena in the sol-gel phase transitions. In our 
growth mechanism, where reactions prefer to grow L length steps each in a 
random direction, the critical phenomena remain unaffected by the length scale, 
but the flexibility of varying the chain step L allows us to study the changeover 
between the phase transition in different gel structures. 
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1. iNTRODUCTION 

The problem of kinetic gelation has been an area of continued interest (l-6/ 
ever since the beginning of the quantitative treatments by Flory (1~ and 
Stockmayer (2) to study the problem of sol-gel phase transitions in the 
complex systems of branched polymers. In this early approach, the reac- 
tions are grown along the geometry of Cayley trees to form branched 
molecules. The sol to gel transition, characterized by the formation of the 
molecule, practically infinite in size, in this way was later known (7'8~ as the 
percolation phase transition on Bethe lattices. Because of its simplicity 
these percolation theories, now known as classical theories, are still a 
valuable tool in deriving the rigorous results (6~ in particular for the molecu- 
lar weights in the pregel state and the position of the gel point, but they are 
limited only to the idealized trees. Since the classical theory of Flory and 
Stockmayer is identical to the percolation on a Cayley tree, de Gennes (4) 
and Stauffer (5) suggested that the percolation on a three-dimensional lattice 
is a good model for the critical phenomena in gelation. The main criti- 
cism (4'5) of the classical theory of Flory and Stockmayer for the sol-gel 
phase transitions came from the poor comparison of their critical exponents 
with that of the percolation in three dimensions (3D), for example 

Uclassica I = 1/2, / ~ c l a s s i c a l  = 1, tclassica 1 = 3 

~'d= 3 ~-~ 0.9, /~a=3 ~ 0.4, ta=3~---2 

where u, /3, and t refer to the exponents of the percolation correlation 
length, volume fraction, and elastic modulus, respectively. It is argued that 
the tree approximation suffers from its oversimplification in that one 
assumes no closed cycles and no steric hindrances, the tree branches freely 
in space without being limited in its growth by the existence of the other 
branches in the same or in another cluster (or tree), neglecting altogether 
the excluded volume effects. The problems of percolation have been 
extensively studied during the last decade. Lubensky and Isaacson (9) pre- 
sented a field theory for the statistics of the linear chains and branched 
polymers in dilute and semidilute athermal solvent and showed that the 
critical exponents for the sol-gel transition will still be of the same type, but 
no predictions for the position of the gel point could be obtained. 

This widely accepted notion of gelation as standard percolation (4~ was 
soon at stake when it was realized (5,m~ that both the percolation theory on a 
3D lattice and the original classical theory of Flory and Stockmayer 
describe an uniform static growth process in which the chemical bonds are 
formed randomly, while in a real irreversible kinetic gelation bonds are 
formed as a result of a kinetic process (1~ which contains both deterministic 
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and random elements. Manneville and de Seze (1~ have modeled a reaction 
growth simulation incorporating the kinetics and suggested that a kinetic 
gelation model might not even be in the same universality class of the 
standard percolation. (A universality class is a group of materials or models 
having, among other properties, the same critical exponents.) Using nearly 
the same model, Herrmann e t  al .  (1 ~) have presented detailed Monte-Carlo 
simulation data for the kinetic gelation on the simple cubic lattice. Compar- 
ing the ratios of the critical amplitudes of the "susceptibility" (the second 
moment of the cluster size distribution which is a measure of the weight 
average degree of polymerization) both below and above the gel point, they 
have shown that this model of kinetic gelation is neither in the univer- 
sality class of standard percolation nor in that of the classical (Flory- 
Stockmayer) theory but in a new universality class of its own. In this model 
all the monomers are randomly distributed on the lattice sites and they are 
fixed at their positions once for all. It is assumed that the dissociation 
process is fast enough to produce all the radicals at the beginning of the 
reaction, and the mobility of the macromolecule, because of its heavy 
weight, is so low that it can be treated as immobile for all practical 
purposes. Bansil e t  a/. (12) have further extended this model incorporating 
the solvent (zero functional monomers) and the mobility by exchanging the 
unreacted monomers with the solvents randomly during the growth. Al- 
though these two effects did not change the universality class, they make 
the computer model more realistic for comparison with laboratory work. 
The data for the trapping and growth terminations were interpreted in a 
more transparent picture of loop formation and its shielding. 

Recently Jan e t  al.  (~3~ have studied the kinetic gelation in the same 
system of binary mixtures of bifunctional (2f) and tetra functional (4f) 
monomers (without the solvent and mobility) on a triangular lattice by 
growing the bonds with and without the help of radicals. Their observation 
on the cluster distribution confirms the conclusions of Herrmann e t  al.  (~l) 

that this model is indeed different from the random restricted valence 
percolation. But in contrast to 3D systems they find that the gel point 
decreases by increasing the concentration of bifunctional monomers, a 
phenomenon well known in polymer science. (13a) A study of the critical 
properties of the radical initiated gelation in the same binary mixture on 
the square lattice is reported by Rushton e t  al .  ~14~ 

In the kinetic gelation, a macromolecule represents a trail of the nearly 
random movements of the radicals. Here the bonds are grown through a 
small fraction of the randomly selected sites (active centers). This process 
results in a growth with memory which incorporates the kinetics of the 
reaction growth. More uniform randomness can be introduced either by 
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increasing the concentration of the active centers or by allowing the 
formation of bonds even without the help of radicals as in standard 
percolations. This possibility was first introduced in Ref. 13. How does the 
sol-gel phase diagram depend on the extent of deterministic growth? A 
brief study of this question is recently reported by Pandey and Stauffer. (]s) 
In the present paper we ask: how are the critical properties affected by 
introducing a small fraction of bond formation other than through radicals 
in addition to that with radicals (a typical example would be the formation 
of associates due to hydrogen bonds or crystallization of strands(13a~; how 
does the crossover take place from the static growth (as in percolation) to 
the kinetic growth (as in gelation)? 

As the kinetic reaction grows, the total number of the radicals de- 
creases due to their annihilation which may cause an early termination of 
the reaction. It is therefore expected that conserving the number of radicals 
throughout the reaction may delay termination. Perhaps this may bring us 
closer to the experiments (12) where the extent of trapping is believed to be 
considerably lower than in the earlier gelation models. However, the 
trapping can also be delayed (15~ in some systems by introducing higher 
functional monomers in the lattice. This would hopefully permit one to 
investigate systems otherwise not accessible in their postgel regime. A 
detailed study of these effects on the sol-gel phase diagram and related 
critical phenomena is presented here. Further, it is suggested in Ref. 12 to 
incorporate another feature which entails the termination of the chain 
growth other than the radical recombinations. Here we do this by including 
a small fraction of unifunctional monomers which act like poisons prevent- 
ing the growth on the points of the chains with which they react. Finally, as 
an extension of all the above models we introduce a new parameter which 
controls features like the extent of loop formation, cross-linking, branches 
etc. In earlier models the reaction was grown randomly in all directions 
through randomly selected active centers; this would perhaps result in a 
uniform (homogeneous) distribution of loops and dangling ends. In reality, 
reactions possibly prefer to grow in chains. Inclusion of our new parameter 
allows us to study in detail the change from the growth with a preference of 
long chains to the one with no preference. The effect of chain growth on 
the critical phenomena is also discussed. 

In the following section we describe the models, and we clarify the 
definitions in Section 3. The results are presented in Section 4 in which the 
subsection 4.1 contains the results of the growth with and without the help 
of radicals, 4.2 deals with the universality and crossover, 4.3 with the effects 
of conserving the number of radicals, functionality, and poison on gelation, 
and 4.4 the chain preferred reactions. Section 5 closes with our conclusions. 
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2. MODELS 

As in the earlier studies, (1~'12) we have modeled the reactions on a 
simple cubic lattice. It is believed (11) that restriction to discrete lattice 
model, though unrealistic, does not affect the qualitative nature of the 
kinetic gelation. Using the lattice as a tool, the loop formation (cyclization) 
and the excluded volume effects are automatically taken into account, 
which were neglected in the Flory-Stockmayer  theory. The effect of the 
solvent is not considered explicitly. 

As a first step of the model, we randomly distribute the m-functional 
(mf) and n-functional monomers on the sites of a simple cubic lattice with 
concentrations % and 1 - % ,  respectively. We assume that the mf and nf 
monomers  have the same volume. No two monomers are allowed to occupy 
the same site simultaneously. In the reaction growth the site occupied by 
the mf monomers  can be connected to the neighboring sites at the most by 
m bonds and those occupied by the nf monomers at the most by n bonds. 
For example, a site occupied by a bifunctional monomer  can be connected 
at the most by two bonds with one or two of its six nearest neighbors. Thus 
monomers  up to a maximum functionality six can be simulated on the 
simple cubic lattice. Again, a mf monomer  can be connected by multiple of 
bonds (m) with one of its neighbors. 

Instead of considering the reaction between initiators [e.g., ammonium 
persulfate and T E M E D  (tetra methyl ethylene diamine)] to produce a 
radical (17) we start from distributing the radicals (called initiators) on a 
small fraction c~ of the lattice sites in addition to the monomers already 
present. The sites occupied by the radicals are called active centers and are 
also occupied by the monomers.  Now one of these active centers and one 
of its nearest-neighbor sites are selected randomly, then a bond is formed 
between the two sites if the monomers at the two sites each have at least 
one bond left unsaturated. The radical is then shifted to the neighboring 
site if there is no radical already present at that site, otherwise the two 
radicals will annihilate each other but the bond will still be formed. If all 
the bonds of the original or of the neighboring site are saturated then no 
bond will be formed between the two sites and the radical stays at its place 
and a new active center with a new neighbor is tried. A site is saturated if 
all m bonds of the mf monomer  at that site are already connected. A 
radical is trapped if the radical site itself or all its neighboring sites are 
saturated. The process of randomly selecting an active center, attempting a 
move to its randomly chosen nearest-neighbor site (called one Monte-Carlo 
step) and connecting the two sites for a successful move is repeated again 
and again. The number  of occupied bonds increases with time (Monte- 
Carlo steps) while the number  of active centers decreases in time due to 
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their annihilation. The reaction stops when all the active centers are 
trapped (or annihilated). The bonds grown this way establish permanent 
links among the constituent monomers and make the reaction irreversible; 
we do not allow breaking of any connected bond throughout the reaction. 
The clusters formed by connecting the sites in this process represent the 
trail of the motion of the radicals (active centers); these clusters are called 
macromolecules. By studying the statistics of these macromolecules and 
their growth in time one can study the kinetics of the gelation, sol-gel 
phase diagram and the associated critical phenomena (see the next section). 

So far we have discussed the model already studied in most of the 
literature mentioned above. Now we describe how to develop it further to 
cover a wide range of reactions and how to study the basic problems of 
universality and crossover. 

2.1. Random and Kinetic Bond Growth 

In kinetic gelation the bonds are grown only through a small fraction 
of the lattice sites (the active centers) by randomly selecting them and 
making attempts to form bonds with their nearest neighbor monomers 
using the procedure of preceding paragraphs. Thus the system has a strong 
memory. On the other hand, in random (restricted valence) percolation (18) 
we randomly choose any of the percolating lattice sites and by selecting one 
of its nearest-neighbor sites randomly we connect them if both sites are not 
yet connected. 

To combine the two growth procedures, the kinetic gelation by initia- 
tors and the random bond growth by percolation, we modify our growth 
algorithm such that after every k attempts made by radicals to form bonds 
one attempt is made to form a bond without the help of the radicals. Thus 
the probabilities of an attempt to form a bond with and without the help of 
radicals are 

e(k)  = k/(1 + k), Q(k) = l / ( 1  + k) (1) 

where k = 1,2 . . . . .  ~ in our program. Thus the total number of bonds in 
the system added by radicals divided by the total number of bonds formed 
without radicals is equal to P ( k ) / Q ( k ) =  k. (For simplicity we take the 
number of bond formation attempts equal to the number of bonds formed, 
which is valid for small p, the fraction of occupied bonds.) But if we look 
only at the unsaturated bonds attached to a monomer with a radical on it, 
then the probability for one of these bonds to be formed by the radical, 
divided by the probability for one of these bonds to be formed without the 
radical, equals k / c  z since only the fraction c/<< 1 of all bonds formed 
without a radical happen to be a radical site. 

The limit P ( k ) ~  1 (k--~ co) corresponds to the radical initiated gela- 
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tion while the limit P ( k ) ~ O  (k~O)  corresponds to a restricted valence 
percolation process. (18) One must note that the latter limit is not identical to 
the percolation procedure, since in our case the two neighboring sites can 
be multiply connected (as in gelation), which is not permitted in standard 
percolation. However, since the probability of the multiply connected 
neighboring sites is small, the critical concentration Pc above which the 
largest (infinite) cluster appears (and only finite cluster below), is increased 
by only a small amount over that of the standard percolation threshold 
Pperc, i.e., 

Pperc = f(P, p2 . . . .  ) = p + ap2 + O(p 3) (2) 

Thus we expect.Pperc to be an analytic function of p. Therefore the critical 
behavior described by the leading singularities in ] p -  Pc l should remain 
the same as the percolation behavior. We will therefore refer to this limit 
P(k) ---> 0 (k ~ 0) as restricted valence percolation. 

Thus by varying P(k) or k one can study the crossover from one class 
of kinetic growth (gelation) to another class of random growth (percola- 
tion). We employ this method to discuss various features governing the 
phase diagram and critical phenomena. In the rest of this paper we 
frequently use the parameter k to characterize different cases. We should 
also mention that the parameter k here is equivalent to m in Ref. 15 and to 
1/n in Ref. 13. 

2.2. Conservation of Radicals 

Trapping of the radicals is often a problem in studying the complete 
growth reaction in radical initiated gelation. If the radicals are trapped 
before the gel point is reached, one cannot study the sol-gel phase 
transitions. Sometimes even if trapping is not a problem in studying the 
pregel reactions, it is not possible to estimate the extent of reaction in the 
gel due to trapping of the radicals soon after gelation. Also, as the reaction 
grows the number of radicals decreases due to annihilation; this results in 
an early trapping. The number of radicals can be conserved by avoiding 
the annihilation or by creating a pair of radicals in the system whenever the 
two radicals annihilate each other. Here we adopt the former; whenever a 
radical would be annihilated in its subsequent move, we move this radical, 
prior to its annihilation, to a randomly selected site (not occupied by the 
radical). Now this radical attempts growing the macromolecule to which 
this random site belongs, in the usual procedure described above. 

2.3. Poison 

In real gelation (12) there is always a finite chance that the growth of 
the chain terminates due to poison. In our model of radical initiated 
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gelation, this would be the case at the end of a chain, where the radical is 
trapped or annihilated apart from the usual trapping inherent in the model. 
This effect of poison can be taken into account by adding a small 
concentration of unifunctional (l f )  monomers in the system. Since the site 
occupied by the I f  monomer can be connected only by one bond with the 
other molecule, whenever a radical moves on to a I f  monomer it has to stay 
there forever as no chemical bond is left to leave that site. 

2.4. Chain-Preferred Reaction 

Until now we have applied no constraint on the formation of loops, 
branches, cross-links etc. in the growth models discussed above. The 
reactions are grown in a completely random process in which all the active 
centers are chosen with equal weight to form bonds randomly in any 
direction with equal probability. The loops, branches, and cross-links 
formed this way are distributed uniformly. It is, however, possible that in 
actual gelation the reactions prefer to grow in chains; then it is more likely 
to form branches and cross-links than loops. To model this situation we 
grow the reaction in a random direction with a preferred length of L steps, 
where L -- 1,2 . . . . .  in one direction. Thus we randomly choose an active 
center, say i, and one of its nearest-neighbor sites j ,  then we connect the 
sites i and j if both the sites are unsaturated and shift the radical to the site 
j if there is no radical already present on it; otherwise the two will 
annihilate each other. This radical now attempts to move the remaining 
L -  1 steps in the same direction (i--~j) if allowed and then--or  if it was 
not allowed earlier to continue moving in one direction--it  forgets its 
directional history. The last site of the series of L moves is a new site for 
this radical to start its next move in a random direction again of L steps. 
This process is repeated again and again by selecting the active centers and 
following the prescribed moves. The limit L---> 1 corresponds to our radical 
initiated uniform gelation while for a large value of L it gives a gelation 
with more chains and some cross-links. Thus by varying the parameter L 
one can study the kinetic gelation and the changeover between the two 
topologically different gels. 

3. DEFINITIONS 

The basic idea behind defining the various physical quantities in 
studying the kinetic gelation is the same in all the models described in the 
preceding section, and the numerical evaluation of them is similar to 
percolation problems. These methods have already been discussed in the 
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earlier literature(ll'12~; however, we will briefly recapitulate them here for 
the sake of completeness. 

In the growth process we have seen that the number of occupied bonds 
(i.e., the connected bonds) increases as the reaction proceeds. A cluster 
formed by joining the nearest-neighbor sites in the growth attempts is 
ramified in geometry and is recognized as a branched macromolecule. At a 
particular instant of the reaction there exist clusters (macromolecules) of 
various sizes; the distribution of the cluster sizes depends on the reaction 
mechanism adopted. As the time increases (i.e., as the reaction grows) the 
probability of finding the larger macromolecules increases and so does the 
fraction of occupied bonds. An infinite macromolecule appears at a critical 
concentration Pc of the occupied bonds, known as a gel point, above which 
the probability of a monomer belonging to this macromolecule increases 
towards unity as p ~ 1. The large molecules are highly ramified consisting 
of branches, loops, and crosslinks. The topology of the form of a large 
molecule is believed to change in the course of the reaction growth. 
Because of the heavy weight, these large molecules are usually assumed (~2) 
to be immobile, although we have assumed even the smaller molecules to 
be immobile in our growth scheme. From the statistics of the molecules 
during the kinetic reactions we study the gelation through the various 
quantities defined below. 

In the radical assisted reactions the time of growth at any stage of the 
reaction is defined in analogy with the standard Monte Carlo practice, and 
is equal to the sum of all the attempts (including both successful and 
unsuccessful attempts) made by radicals to form bonds until that stage of 
reactions normalized by the number of the active centers. In other growth 
procedures where we allow the formation of bonds even without the help of 
the radicals, we may analogously define the time as the total number of 
attempts to form bonds with and without the help of the radicals, normal- 
ized by the total number of bonds in the lattice. 

The fraction of the occupied bondsp(t) is equal to the total number of 
carbon bonds (C-C) grown until time t divided by the total number of 
available bonds in the lattice. Since p(t) increases smoothly with time t all 
along through the gel point as noted by Herrmann et a/., (ll) and also 
supported by our data, one can study the kinetic growth as a function of p 
rather than t. Note, however, that higher orders of nonanalyticity in p(t) 
cannot be ruled out. (10 

The weight average degree of polymerization can be expressed in terms 
of the number of finite macromolecules and their moments. Let n s be the 
number of finite clusters (macromolecules) consisting each of s monomers 
per site. If we assume that mf and nf units have the same weight, then s is 
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proportional to the molecular weight of the molecule of size s; otherwise s 
is regarded as the degree of polymerization. The weight average degree of 
polymerization is then defined as 

Xw = 2 S2ns / 2 sns 
S $ 

where the sum is over all clusters of size s, including the isolated monomers 
(s -- 1) but excluding the largest cluster. The first moment in the denomina- 
tor sometimes creates difficulties in the Monte Carlo simulation of finite 
systems due to strong influence of boundaries; its value deviates apprecia- 
bly from unity at the gel point. Therefore we focus our attention only on 
the numerator,  the second moment  of the cluster size distribution 
(analogous to susceptibility in thermal phase transitions) 

X-- ~ san, 
s = l  

In the infinitely large system, where the first moment is unity in the sol X is 
equal to the weight average degree of polymerization. 

The probability G ( 0  that a monomer is a part of the largest 
macromolecule is equal to the number of monomers belonging to the 
"infinite" cluster divided by the total number of monomers. And the 
probability that a monomer has participated in the reaction is equal to the 
fraction v, the number of monomers that have at least one bond occupied, 
divided by the total number of monomers. 

We keep track of the data, calculating all the physical quantities 
described above, throughout the simulation. The initial concentration of the 
initiators c 1 is usually small; a typical value is e 1 -- 0.01, which we choose in 
all of our simulation here. In real gelation, however, the concentration c~ 
can be much smaller. As we mentioned earlier, if we allow annihilation of 
the active centers (whenever the two happen to join together), then the 
number of initiators decreases smoothly with time. During the growth, all 
the relevant information (including the physical quantities defined above) 
are printed in equal intervals of increasing concentration of the occupied 
bonds. The reaction stops when all the radicals are trapped. The gel point 
Pc is characterized by the onset of the largest molecule, where X shows a 
maximum. We use the numerical estimate of X to discuss the critical 
phenomena (see Section 4.2). For a reliable estimate of the quantities in 
most of the studies here we average over 30 runs on samples 30 • 30 • 30 
and 50 • 50 • 50. In all these studies presented here we have used a CDC 
Cyber 76 machine where we use the efficient subroutine RANF for 
generating the random numbers. For the large samples the execution time 
roughly varies between 5 to 15 minutes for 30 runs. 
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4. RESULTS 

Using the above definitions we now discuss our results of simulating 
the models of Section 2. For studying the critical phenomena we use the 
largest sample (50 • 50 x 50) and except for extrapolating the results to 
obtain estimates in the statistical limit of size infinity, we use only the 
sample 30 x 30 x 30 for the rest of our analysis. The initial concentration 
of the radicals c~ is kept 0.01 in all our detailed studies here. The effect of 
varying the concentration c 1 on the ratio of the critical amplitude of weight 
average degree polymerization R (see part 4.2 of this section) has already 
been discussed by Herrmann et al. (11~ and we will discuss its effect on the 
nature of growth in 4.1. A considerable change in the critical concentration 
Pc on changing the c~ for small c~ observed by us is in agreement with 
earlier findings. (11'12) 

4.1. Random and Kinetic Growth 

As discussed in Section 2 of reactions models, after every k attempts 
made by radicals to form bonds, one attempt is made to form a bond 
without the help of radicals as in percolation. This process is repeated again 
and again until all the radicals are trapped or annihilated. The concentra- 
tion of initiators decreases and the concentration p of the occupied bonds 
increases with time. As p approaches the critical concentration Pc (the gel 
point) the largest macromolecule appears. This is a general growth scheme 
which incorporates both the random and bond growth as in percolation as 
well as the kinetic bond growth by radicals with attempts probabilities Q ( k )  

and P ( k )  [see Eq. (1)], respectively. In the limit k ~ m we get an exclusively 
radical assisted gelation while in the limit k ~ 0, a growth as in random 
percolation. 

We should mention here an alternate way to go from the kinetic 
growth limit to the static growth limit and vice versa. We know that, in 
gelation, the formation of bonds through a restricted number of sites (the 
active centers) with concentration c~ results in a deterministic growth 
process. Increasing the concentration c l reduces the deterministic growth 
because the number of the restricted sites increases, and in the limit c~ ~ 1 
when there is no restriction at all, the bonds are formed through any lattice 
site as in percolation. Therefore, by changing the concentrations of initia- 
tors c x one may study the crossover from kinetic gelation (small c~) to the 
percolation (large ci). (11~ The two methods, of changing k and changing c 1 
may not be similar in their effects on the critical phenomena. Here we will 
limit to study the effect of varying the k on the sol-gel phase diagram. 

The reactions are grown on a 30 • 30 • 30 simple cubic lattice for a 
set of binary mixtures 2 f - 4 f  with concentration of bifunctional monomers 
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between 0.0 and 0.95 each for several values of k. All critical and trapping 
concentrations, Pc and Pt, are determined by averaging over 50 runs. The 
corresponding critical curves (the variation of the critical concentration Pc 
with c2) and the trapping curves (the variation of the trapping concentra- 
tion Pt with Cz) are presented in Fig. 1. Let us first consider the case k = 1, 
when there is equal probability of attempts to form bonds with and without 
the help of radicals. Then the trapping occurs well before the gel point even 
at c 2 = 0. In the growth process, where 0 < k < co, a fraction of the 
monomers  act like poison, which prevents the growth of the molecule. This 
can be understood as follows: suppose a bond is formed between two 
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Fig. 1. Plots of the critical concentration (the gel point) Pc (lower points) and the trapping 
concentrationpt , the concentration of occupied bonds when all the radicals are trapped (upper 
points) versus c2, the concentration of bifunctional monomers, in a 2 f - 4 f  binary mixture. 
Sample size 30 x 30 • 30, number  of runs  = 50, initial concentration of radicals c~ = 0.01. The 
critical and trapping points, for different values of k (the growth process where, after every k 
attempts made by radicals to form bonds, one attempt is made to form a bond without the 
radicals) are shown with different symbols: k = 2, 3, 6, 10, 24, and oe correspond to |  E3, + ,  
O, [], and A.  
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bifunctional monomers without any previous bonds. Then these two mono- 
mers are left with one unsaturated bond each. Now, if a radical moves into 
one of these one functional monomers, it will be trapped at the site to 
which it reacts. This may be the case with any monomer of even functional- 
ity (say 4f) when an odd number of bonds (say 1 or 3) are grown without 
the help of radicals and if the rest of the bonds are grown with the help of 
radicals. Then it may act as a poison sooner (when three bonds of a 4f  
monomer are formed without radical) or later (when one bond of the 4f  
monomer is formed without radical). Thus there is a finite probability that 
some of the even functional monomers may act as a poison (slow or fast) 
whenever k is finite. For higher values of k the effect of growth termination 
by such poisoning is expected to be more pronounced at later stages of the 
reaction. However, the termination due to such poisoning can be delayed 
by increasing the concentration c I of radicals. 

At the lower values of k (2, 3), both the gel point and the trapping 
point decrease with increasing concentration of bifunctional monomers, 
which is in accord with the mechanism discussed above. At slightly higher 
values of k (6), the gel point Pc remains constant for a fairly large range of 
c 2 and then it decreases with increasing c 2. In the regime where p decreases, 
the trapping concentration Pt is quite close to Pc- The fall of Pc with 
increasing c2 may be spurious; the data are more fluctuating in this regime. 
However, the poisoning may also result in such trend. For still higher 
values of k (10, 24), the gel point remains constant for a larger range of c 2 
and then it increases (more pronounced with k = 24) and finally it starts 
decreasing (pronounced with k = 10) with increasing concentration c 2. In 
the limit k ~ oe, the gel point first remains constant and then increases with 
increasing concentration c 2. For the unexpected increase of the gel point Pc 
with increasing c2 or decrease of Pc with increasing concentration of tetra 
functional monomers c 4 may be indicative of some shielding of the tetra 
functional monomers as is speculated by Bansil et al. (12) The trapping 
concentration decreases all the time with increasing concentration of hi- 
functional monomers as is expected. The critical-trapping concentration 
(the concentration of 2f  monomers at which the critical curve is expected to 
cross the trapping curve) increases with increasing value of k; this is again 
in accord with our above arguments. 

4.2. Universality and Crossover 

Here we study the questions regarding the universality class of the 
sol-gel phase transition and related crossover. We have already discussed 
that by changing the probability of growth attempts by radicals P ( k )  (or k) 
one can make a crossover from one kind of critical behavior of radical 
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assisted kinetic gelation with P ( k ) ~  1 (k ~ ~)  to another  kind, of percola- 
t ion with P ( k ) ~  0 ( k ~  0). To study the critical phe nome na  we calculate 

the degree of polymerizat ion 

x=C-(pc-p)-7 p<pc 

x = C + ( p - & )  - ' ' ,  p>p~ 

where p is the fraction of occupied bonds,  Pc is its critical value (the gel 
point)  as we have already ment ioned,  C+ and  C_ are the critical ampli- 

tudes for p > Pc and  p < Pc, respectively, and  7' and  y are the correspond- 
ing exponents.  Usual ly  Y' = 7 in most  of the second-order  phase transit ions 
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Fig. 2. Log-log plots of the average degree of polymerization, X versus I P -Pci for various 
values k Symbols /% | O, and + denote values for k = 0, 3, 6, and ~,  respectively; the 
fitted lines are shown. Upper points denote data for g < p~ and the lower points for p > Pc. 
Sample size 50 • 50 x 50, number of runs = 30, c I = 0.01. Plots (a) show data for the binary 
system 2f-4f with c 2 = 0.0 and plots (b) show data for the binary system 2f-6f with c 1 = 0.1. 
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Continued. 

according to the scaling theories. However, let us look into the data as such 
and then we follow our analysis in the framework of scaling hypothesis. 
This is merely to show how much one has to shift these Monte Carlo data 
(for X here) by changing Pc, to obtain the exponent ,f --- y' as in scaling 
theory. 

To calculate the degree of polymerization X we simulate the data on a 
50 x 50 x 50 simple cubic lattice and take 30 runs for each X to get an 
average estimate. For 2f-4f and 2f-6f binary mixtures the log-log plots of 
X versus (p - Pc) are presented in Figs. 2a and 2b, respectively, for various 
values of k ( =  0, 1,2,6, oo). Clearly, these data give very good fits to 
straight lines (perhaps due to systematic errors) the slope of which vary 
with k; the deviation in their slopes is clear from these figures. For the 
2f-6f binary mixture we have calculated the slopes 7' and y and their ratios 
7'/y from the plots; these are collected in Table I. Evidently, for different k 
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Table I. 

k p~ ,/ ~,' . / ' / y  

0 0.288 1.823 1.569 0.875 
2 0.123 1.806 1.907 1.056 
6 o. 102 1.303 1.843 1.408 
Ge 0.091 1.083 2,385 2.202 

va lues  f r o m  a sys t ema t i c  c h a n g e  of  "//Y f r o m  0.87 to 2.20 as k is va r i ed  

f r o m  0 to m ,  one  m a y  be  led to be l i eve  tha t  the  c ros sove r  f r o m  k ine t ic  

ge la t ion  to s ta t ic  p e r c o l a t i o n  m a y  be  c h a r a c t e r i z e d  by  the  c h a n g e  in the  

v a l u e  of  7'/7. T h e n  the  q u e s t i o n  arises h o w  to cha r ac t e r i z e  the  un ive r sa l i ty  

class whe re  the  e x p o n e n t s  a re  s u p p o s e d  to h a v e  the  s a m e  va lue  in one  class. 
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Fig. 3. Log-log plots of X versus IP - & l  for the radical initiated growth (k = oe) in a 2f-6f 
binary mixture with c I = 0,1. From 80 runs on each sample 10 • 10 • 10 (O), 20 • 20 • 20 
(+), 3 0 •  (%) along the data on 5 0 • 2 1 5  (| for k = o v  for Fig. 2b, the 
extrapolated data for the infinite-size sample are shown by [3. Upper points are for p < Pc and 
lower for p > Pc, 
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One may think that the systematic error due to finite size effect appears 
both in Pc as well as in the prefactors of the degree of polymerization which 
causes different values of 7 and 7' for different values of k. To resolve this 
doubt we generated data on various samples 10 • 10 • 10, 20 • 20 • 20, 
30 x 30 • 30 for k = oo, and took 80 runs for each to calculate average X. 
From these data including our average value of X and Pc for 50 x 50 • 50 
sample we extrapolated the values of X and Pc to infinite sample. The 
log-log plots of X versus IP - Pc[ of these extrapolated data along with their 
original values are shown in Fig. 3. The extrapolated curves give Pc = 0.91, 
7 = 2.24, and 7' = 1.53. Although the result supports 7' v ~ Y, it should not 
be regarded as conclusive because of the poor fits in the extrapolated data 
for p > Pc ; secondly, the slope is calculated from the data which are not 
close to Pc, and a slight change in_pc gives considerable change in 7 and 7'- 

Now we resort to our analysis in context to the scaling hypothesis 
7 = 7', which is adopted by Herrmann et al. (1I) Here we choose the value 
of Pc to fit our data such that 7 ~ 7'. Log-log plots of these fits for 2f-4f 
and 2f-6f binary mixtures (of the preceding section) are shown in Figs. 4a 
and 4b for various values of k (0 to oo). The continuous shifts of the curves 
give a feeling for the change of the critical behavior as k changes. The 
crucial quantity for the test of the universality here is the ratio R 
= C_/C+ of the critical amplitudes of X for p <_pc to p >Pc.  The fitted 
values of Pc, 7, and R are presented in Table II for various values of k. For 
the lower values of k we are not able to get sufficient data to calculate 3' 
(for p > Pc) because of the early trapping possibly due to poisoning effects. 
However, the different values of R ( ~ 9 )  for k = 0 (standard percolation) 
and R ( ~ 2 )  for k = o~ (kinetic gelation) lead one to conclude that the 
kinetic gelation belongs to a different universality class than that of the 
standard percolation. Note that various 2f-4f and 2f-6f mixtures with 
0 < c 2 < 1 which may correspond to percolation (e2 = 0),  restricted valence 
percolation (c 2 = c 6 = 0), and random restricted valence percolation (c 2 
v ~ 0), are believed to be in the same universality class with R ~ 8-10. 

How does the universality class change from kinetic gelation to stan- 
dard percolation--i.e, what is the nature of the crossover? Table II tries to 
answer these questions. Here the universality class is characterized by the 

Table II. 

k p~ y ~  y' R 

0 0.290 1.7 8.4 
2 0.120 1.8 2.7 
6 0.100 1.6 3.6 
oo 0.090 1.8 3.8 
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Fig. 5. A qualitative variation of R, the ratio of the critical amplitudes of X (from p < Pc to 
P > Pc), versus k, from the data on the sample 50 • 50 • 50 of 2 f - 6 f  binary mixture of 
Fig. 4b. 

amplitude ratio R which varies with k. A qualitative nature of the variation 
of R with k is shown in Fig. 5 for the 2 f - 6 f  binary mixture. The value of 
R = 8 at k = 0 drops to almost half of its value at k = 2 and then it remains 
almost constant fluctuating around R - - 3 ,  throughout the range of k. 
The variation of R with k leads one to speculate that the point (p = 0, 
k = 0 (P(k )  = 0)) may be a multicritical point where the static percolation 
and kinetic gelation phase transitions meet. Then there may be a sharp 
crossover from a percolationlike growth to a gelationlike one at the mul- 
ticritical point. However, the possibility of a continuous variation of R with 
k for k < 2 cannot be ruled out especially if we look at the variation with 
P(k)  rather than k. We hope further work in this range will clarify our 
speculations. 

4.3. Effect of Conserving the Radicals, the Functionality 
of the Monomers, and the Poison 

Let us now turn our attention to the practical side of the kinetic 
reactions. Trapping is often a problem since it terminates the reaction 
preventing the complete growth. Sometimes the reaction terminates before 
the gel point is reached, making it difficult to study even the pregel regime. 
Of the various effects in real gelation, here in our simulation we consider 
mainly three effects: (i) trapping of a radical due to saturated neighbors, 
(ii) the annihilation of the radicals whenever the two radicals happening to 
meet, and (iii) the generation of poisons in reactions where k is finite. 
However, in the radical initiated reactions (k ~ oe) in a mixture of mono- 
mers of even functionalities, no poisons are generated during the growth, 
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and the reaction terminates only due to annihilation of the active centers 
and the saturations of the monomers surrounding the radicals. In such 
cases, the effect of poisons as expected in real gelation may be compen- 
sated, to some extent, by annihilation of the active centers. (12) In the 
following we analyze the data by avoiding annihilation and including the 
poisons separately in our growth reactions. 

We conserve the number of radicals throughout the reaction by 
avoiding the annihilation. In the growth procedure, whenever a radical 
would be annihilated with another radical in its subsequent move, we shift 
this radical instead to a randomly selected other site avoiding the active 
centers. For the 2 f - 4 f  binary mixtures we simulate the reaction on a 
30 • 30 • 30 simple cubic lattice. We take 15 runs for each concentration 
to find the average value of degree of polymerization X, gel point Pc, and 
trapping concentration Pt. The variations of the gel point Pc and the 
trapping concentration p~ as a function of the concentration of the bifunc- 
tional monomers c 2 are plotted in Fig. 6. For comparison we have also 
shown the corresponding critical and the trapping curves without conserv- 
ing the radicals. Figure 6 clearly demonstrated that both the gelation as 
well as trapping are delayed by conserving the radicals. A close observation 
of the data shows that trapping is delayed more than the gel point, 
extending the postgel regime. Thus conserving the radicals in our growth 
mechanism could be helpful in studying the kinetics of the system otherwise 
inaccessible to their postgel regime. 

In the phase diagram of the radical initiated gelation in a 2 f -4 f  binary 
mixture we saw that on increasing the concentration of the 2f  monomers, 
the gel point first remains constant and then increases as long as gelation 
occurs. The decrease of the critical concentration Pc on increasing the 
concentration of the tetra functional monomers was speculated (12) to be 
due to some shielding of the 4f  monomers. Is such shielding effect more 
dominant in higher functional monomers, as is the case in 2 f - 4 f  binary 
mixtures? To address this question, we performed simulation for the radical 
initiated kinetic gelation in 2 f - 6 f  binary mixtures, on a 30 • 30 • 30 simple 
cubic lattice. We took 15 runs to find the average values of the critical 
concentration pc and the trapping concentration Pt. The corresponding 
critical and trapping curves are shown in Fig. 7; for comparison we have 
shown the same curves for the 2 f -4 f  binary mixtures. In the critical curve 
we do not observe significant change except for a little shift which is within 
the statistical errors. This implies that the probability of shielding the 6f 
monomers is the same as that for the 4f  monomers. There is, however, a 
considerable change in the trapping curve; it falls more steeply with 
increasing concentration of 2f monomers. Thus by increasing the function- 
ality the trapping can be delayed as is expected. 
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Fig. 6. Plots of the critical concentration (the gel point)Pc (lower points) and the trapping 
concentration Pt (upper points) versus c 2 the concentration of bifunctional monomers in 2.[-4.[ 
binary mixtures. Sample size 30 • 30• 30, number of runs = 15, c~ = 0.01. The points 
denoted by A are the data obtained by conserving the number of radicals in the radical 
initiated reaction (k = oe). For comparison the corresponding data obtained without conserv- 
ing the radicals are also shown by O. 

The  presence  of poison  is expected  to affect  the so l -ge l  phase  transi-  
tion. To invest igate  this effect, we should  r e m e m b e r  that  even in the radica l  
in i t ia ted  react ions,  the presence of the m o n o m e r s  with odd  funct ional i t ies  
acts l ike poison,  since they prevent  the growth increas ing the possibi l i ty  of 
t rapping.  The  higher  the order  of this odd  funct ional i ty ,  the la ter  is their  
effect as poison.  Therefore ,  we call the higher  odd  funct ional  monomers  
"s low" poisons  whereas  the one func t iona l  m o n o m e r s  are cal led " fas t"  
poisons.  W h e n e v e r  a un i func t iona l  m o n o m e r  reacts  with any  molecule,  it 
immed ia t e ly  te rminates  the growth of the molecule  in the d i rec t ion  in which 
it is a t tached .  

F i rs t  we cons ider  the sol of 4 f  m o n o m e r s  with a small  concen t ra t ion  of 
poison  (the I f  monomers )  and  grow the reac t ion  by  radicals  a l lowing the 
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Fig. 7. Critical curves (lower points) and trapping curves (upper points) for 2 f - 4 f  and 2f-6f 
binary mixtures for the radical initiated growth are shown by �9 and + ,  respectively. Sample 
size was 30 x 30 • 30 for both the systems with 15 runs for averaging. 

annihilation of the active centers, i.e., we study the radical initiated gelation 
in a random binary mixture of lf-4f monomers.  From our simulation on a 
30 • 30 • 30 simple cubic lattice (averaging over 15 to 30 runs) we find 
that the poison with concentration cp 1> 0.02 terminates the reaction very 
fast well before the gel point. We may say that the system will never gel (la) 
in the presence of poison with concentration more than 2%. At cp = 0.01, 
which is equal to the initial concentration of the radicals, we do get a gel 
point but the reaction does not continue very long in the postgel regime. If 
we conserve the number  of radicals, then the gelation can be achieved for 
the concentration of poison cp up to 3%: at c = 0.04 trapping occurs well 
before the gel point. By going to l f - 6 f  binary mixtures we get the gelation 
for concentration of poison c e up to 4%, irrespective of whether we conserve 
the radicals or allow the annihilation of the active centers. In the latter case 
trapping occurs soon after the gel point. Introducing a small amount  of 2f  
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m o n o m e r s  c 2 -- 0.1, in no case ( l f - 2 f - 4 f  or l f - 2 f - 6 f )  we get gela t ion even 
at  cp -- 0.01. This  behav io r  is quite expected,  since the 2 f  monomers ,  af ter  
reac t ing  with poisons  ( l f  m o n o m e r )  immed ia t e ly  become  poisons  te rmina t -  
ing the reac t ion  faster.  

H o w  does  po ison  affect  the cri t ical  behav ior  in the so l -ge l  phase  
t ransi t ions  and  the re la ted  crossover? W e  explore  this quest ion by  s tudying  

the kinet ic  growth in a l f - 4 f  b ina ry  mixture  with c 4 = 0.99 and  c 1 = cp = 
0.01 and  ini t ial  concen t ra t ion  of the radicals  c 1 = 0.01 wi thout  conserving 
them. The  sample  size is 50 • 50 • 50 a n d  we take 30 runs to f ind out  
average  degree of po lymer i za t ion  X, cri t ical  concen t ra t ion  Pc, a n d  t rapp ing  
concen t ra t ion  Pt. W e  car r ied  out  this s tudy scanning  the entire range of 
growth processes  with k = 0 to k = oe. Us ing  the m e t h o d  out l ined  in 
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Fig, 8. Log-log plots of the fitted data (by varying Pc to obtain y = y' for X versus Jp -pcl  
for lf-4f binary mixture with c I = cp = 0.01, Sample size 50 • 50 x 50, number of runs = 30, 
Q = 0.01. Symbols A, D, �9 | ~ , H ,  and + denote the data for the reactions with k = 0, 1, 
2, 3, 4, 6, and m. 



186 Pandey 

Section 2.2, i.e., by shifting the value of Pc until the critical exponents 7 (for 
P < Pc) and y' (for p > Pc) become equal, we found the resulting log-log 
plot presented in Fig. 8. In the two extreme limits we find 

Pc = 0.079, 7 ~ "(' ----- 1.52, R 2.0, k ~ oe gelation 

Pc = 0.288, 7 ~ 7' ~ 1.65, R 9.3, k --~ 0 percolation 

There are some deviations in the ratios Of the critical amplitudes R 
from those without poison, but the deviations are too small to be regarded 
as numerically reliable. To analyze the crossover we show the data for 
k = 1, 2 . . . . .  6. Here we do not get sufficient data for the postgel regime, 
therefore we cannot fit them as in the two extreme cases above. Note the 
difference in the early trapping from those studied in part 4.2 of this 
section, where trapping was not much of a problem at least in getting the 
data for k = 6 in 2f-4f or even for k = 2 in 2f-6f mixtures. However, from 
the data presented here there is a clear evidence of a drastic change in the 
value of R as one goes from the k-->0 case to the k ~  ~ case; this will 
make the variation of R with k more steep in the qualitative sense shown in 
Fig. 5. This may then support that the point (p = Pc, k = 0) is a multicriti- 
cal point, and there may be a dramatic change in the critical behavior if we 
allow the formation of bonds both with and without radicals with equal 
attempt probability. The presence of "fast" poisons make the crossover 
sharper. 

4.4. Chain-Preferring Reactions 

Now we discuss the results of our model of gelation (Section 2.4) 
where reactions prefer to grow in chains of L-length steps. First, we study 
the kinetics in a 2f-4f binary mixture by radical initiated growth on a 
30 • 30 • 30 simple cubic lattice. To estimate the gel point Pc, the trapping 
point Pt, and other physical quantities (X, G, molecular size distributions, 
etc.) we simulate 30 runs each for the entire concentration regime of c 2 (0.0 
to 0.95) and for several values of L (-- 1,2, 3, 10, 50). The calculated critical 
and trapping curves are presented in Fig. 9, where the critical curves shift 
downward as L increases. As we have already discussed, L = 1 corresponds 
to the usual kinetic gelation in which the reaction grows randomly in all 
directions with equal probability through the randomly distributed active 
centers; this results possibly in a uniform random distribution of cross- 
links, loops, and branches. As L increases, the reactions still grow through 
the randomly selected active centers but now the radicals prefer to add 
monomers (or bonds) in random direction each of L length steps; therefore, 
the probability of the loop formation is reduced, which brings down the gel 
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Fig. 9. Plots of the critical concentration (gel point)Pc and trapping concentration Pt versus 
c 2 the concentration of bifunctional monomers in a 2 f -4 f  binary mixture of radical initiated 
chain-preferred reactions with length steps L. L = 1 (O), L = 2 (+) ,  L = 3 (O), L = 10 (A), 
L = 50 ([~). Sample size 30 X 30 • 30, number of runs = 30, c~ = 0.01. 

point. When L is large, it is most probable that the gel consists of more 
branches and cross-links and few loops; on further increasing the value of 
L, eventually there is no significant reduction in the number of loops and 
therefore there is a little change in the gel point. This may explain the 
observed phase diagram in Fig. 9. For varying length steps, there are large 
fluctuations in the trapping concentration which prevent us from observing 
a regular trend in the trapping curves. 

To study the critical phenomena, we simulate the data on a 50 x 50 x 
50 simple cubic lattice and take 30 runs for each value of L. The log-log 
plots of the averaged susceptibility versus ] p - P c [  are shown in Fig. 10. 
Here also we use the method of comparing the critical amplitude ratio R, to 
see the effect of L on the critical behavior. Fitting the data by shifting the 
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Fig. 10. Log-log plots of x versus Ip -Pc] for the radical initiated chain-preferred reactions 
in a 2f-4f  binary mixture with c 2 = 0.0. Sample size 50 • 50 • 50, number of runs = 30, 
Q = 0.01. Symbol & denotes fitted data for the chain length L = 1 (where ~ = u = 1.8, 
Pc = 0.083, R = 2.55) and symbol �9 denotes fitted data for L = 10 (where ,{ = , / =  1.5, 
Pc = 0.070). 

cr i t ica l  c o n c e n t r a t i o n  Pc to o b t a i n  y ~ ~/, we get  

Pc = 0.083, ~/----- , / ~  1.80, R ~ 2.6 for  L = 1 

Pc = 0.070, -{ ~ ,{' ~ 1.55, R ----- 2.3 for  L = 10 

T h e s e  d a t a  a p p a r e n t l y  show that ,  a l l owing  the  r eac t ions  to g r o w  wi th  

p r e f e r e n c e  of  L steps each  in a r a n d o m  d i r ec t i on  does  n o t  c h a n g e  the 

n a t u r e  of  the  cr i t ica l  p h e n o m e n a .  

5. C O N C L U S I O N S  

U s i n g  the  c o m p u t e r  s i m u l a t i o n  as a tool ,  we h a v e  a t t e m p t e d  to look  
in to  the  bas ic  ques t i ons  of the  k ine t ics  of  g rowth  r eac t i on  in gela t ion ,  h o w  

a n d  w h e n  it dev ia tes  f r o m  the  r a n d o m  g r o w t h  processes .  W e  i n c o r p o r a t e  
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the two schemes of static and kinetic growth in a model where the attempts 
are made to form bonds with the help of radicals as in kinetic gelation with 
probability P ( k )  and without the radicals as in static percolations with 
probability Q_.(k) = 1 - P (k ) .  Varying the probability P(k) ,  we have stud- 
ied the crossover between the two different universality classes, from 
percolation [ P ( k ) ~  0] to gelation [ P ( k ) ~  1]. It appears that the possibility 
of slow poisoning, which is inherent in our model, makes the crossover 
sharper; the point (p  = Pc, P ( k )  = 0) may be a multicritical point where the 
critical behavior changes from static geometrically driven fluctuations to 
kinetic fluctuations. However, on the basis of our discussions in Section 4~ 
the possibility of a set of universality classes resulting in a continuous 
changeover cannot be ruled out. Clearly, more detailed analysis is needed 
to shed more light in the precise nature of the crossover in the absence of 
poison or any other interventions. 

We have explored several possibilities to bring the computer models 
closer to the actual reaction growth. For example, we have studied the 
reaction by conserving the number of radicals throughout the growth and 
found this delays both gelation as well as trapping--this could be a 
valuable tool to study the kinetics where trapping is a problem. The 
existence of slow poisons and fast (strong) poisons causing an early trap- 
ping is discussed. We find that even a small concentration of strong poisons 
(cp/> 2%) is sufficient to terminate the reaction preventing the formation of 
gel. In the case where a gelation is achieved in the presence of poison with 
very small concentration (cp .<< 1%), the critical behavior seems to be 
affected by the poison. 

For the kinetic gelation in polymers we have studied a new model in 
which the reactions prefer to grow in linear chains of L-length steps. It 
appears that by varying the length scale L, the distribution of loops, 
branching, and cross-links can be changed; this allows us a flexibility for 
studying the topologically different polymer gels. We find that the critical 
behavior of the sol-gel phase transitions remains unchanged by changing 
L; nevertheless, we observe a changeover in the sol-gel phase diagram 
from a uniform gelation (corresponds to L = 1) to a chainlike (with 
cross-links) gelation as L is changed to a large value. 
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